Prerequisites: Basic theory of large cardinals, forcing, and ultrapowers, some ideas in the first Spencinar post. The Boolean algebra approach to forcing will be helpful.
Recall the basic situation. If $I$ is an ideal on a set $Z$, then we can force with the poset $P(Z)/I$ as defined in Spencer's talk. Its elements are the mod $I$ equivalence classes of the positive subsets of $P(Z)$, ordered by the subset relation (also taken mod $I$). We denote the class of $S\subseteq Z$ by $[S]_I$. This poset is often called the quotient algebra of $I$. The generic object $G$, obtained by forcing with this poset is (equidefinable with) a $V$-ultrafilter, and so in the extension $V[G]$ we can take the $V$-ultrapower of $V$ by $G$. We denote this ultrapower by $V^Z/G$.
The basic definition, due to Jech and Prikry, is:
Definition: An ideal $I$ on a set $Z$ is precipitous if it is forced by $P(Z)/I$ that:
$V^Z/G$ is well-founded (in V[G]).
There are several combinatorial characterizations of precipitousness for an ideal $I$.
Let's give some nontrivial examples of this. A very basic result is that saturated ideals are precipitous.
Proposition: Suppose $I$ is $\kappa$-complete and $\kappa^+$-saturated. Then $I$ is precipitous.
Proof: Suppose that $I$ is not precipitous, so we can find $[S]_I$ forcing that $V^Z/G$ is ill-founded. Then let $\langle\dot{F}_n:n<\omega\rangle$ be $P(Z)/I$-names for functions $Z\rightarrow V$ in $V$ so that $[S]_I$ forces that for every $n$, $[\dot{F}_{n+1}]_G \in [\dot{F}_n]_G$ in the ultrapower.
The key is that one can replace the $\langle\dot{F}_n:n<\omega\rangle$ by actual functions in $V$ without changing $S$. Let $n<\omega$. Find a maximal $P(Z)/I$ antichain $\mathcal{A}$ below $[S]_I$ deciding the value of $\dot{F}_n$. By a "disjointifying" argument using saturation and completeness, we can find a system of pairwise disjoint representatives $\langle A_i:i\in \mathcal{A}\rangle$ for the elements of this antichain. Define $f_n(z)$ to be the value of $\dot{F}_n$ forced by $[A_i]_I$ if $z\in A_i$, and 0 otherwise. Then we can see that $[S]_I$ forces $[\dot{F}_n]_G = [f_n]_G$.
But now (using countable completeness of $I$), in $V$, for almost every $z\in S$, $f_{n+1}(z)\in f_n(z)$ for every $n$, giving an ill-foundedness in $V$. $\Box$
So the generic ultrapowers we considered last time (which didn't exist) were well-founded.
An immediate question is: can there be a precipitous ideal on small cardinals, e.g., $\omega_1$? The generic ultrapower construction and absoluteness of constructibility show that existence of any precipitous ideal implies that it is consistent that there is an embedding $L\rightarrow L$, so existence of a precipitous ideal has consistency strength at least that of the existence of $0^\#$.
We construct a precipitous ideal in a forcing extension starting from a measurable cardinal. The ideal is a fundamental one--start from a large cardinal ideal $J$, force to collapse the large cardinal to a small cardinal, and show that the ideal $I$ generated by $J$ in the extension retains some of the nice properties of $J$.
Actually, we'd like our precipitous idea to be a natural ideal, e.g., the nonstationary ideal on $\omega_1$. This is possible. However, today we will only get precipitousness for an induced (read: unnatural) ideal, that is an ideal which is defined to be the collection of subsets forced not to be in a particular ultrafilter of the form $U(\hat{j},i)=\{X:i\in \hat{j}(X)\}$ derived by a certain generic embedding $\hat{j}$. (We'll see this in action below).
Actually, we'd like our precipitous idea to be a natural ideal, e.g., the nonstationary ideal on $\omega_1$. This is possible. However, today we will only get precipitousness for an induced (read: unnatural) ideal, that is an ideal which is defined to be the collection of subsets forced not to be in a particular ultrafilter of the form $U(\hat{j},i)=\{X:i\in \hat{j}(X)\}$ derived by a certain generic embedding $\hat{j}$. (We'll see this in action below).
Theorem: Suppose $\kappa$ is a measurable cardinal and let $U$ be a $\kappa$-complete normal ultrafilter on $\kappa$. Let $\mathbb{P}=\mathrm{Col}(\omega, <\kappa)$ be the Levy poset collapsing $\kappa$ to $\omega_1$. Then the ideal $I$ in $V^\mathbb{P}$ generated by the dual of $U$ is precipitous in $V^\mathbb{P}$.
Proof. By the basic theory of elementary embeddings and large cardinals, the ultrapower embedding $j:V\rightarrow M$ given by $U$ can be extended to $j^+:V[G]\rightarrow M[G\ast H]$, where $G$ is generic for $\mathbb{P}$ and $G\ast H$ is $V$-generic for $j(\mathbb{P})$ (here we used that $\mathbb{P}$ completely embeds into $j(\mathbb{P})=Col(\omega, <j(\kappa))^M$, and we'll write $j(\mathbb{P})=\mathbb{P}\ast \mathbb{Q}$). The extension takes the object $\mathbb{P}$-named by $\dot{\tau}$ (evaluated by $G$) to the object $j(\mathbb{P})$-named by $j(\dot{\tau})$ (evaluated by $G\ast H$).
The correct way to think of this is that forcing with $\mathbb{Q}$ over $V$ adds the embedding $j^+$.
First we show that (in $V[G]$)
Claim: $I$ is equal to the ideal $\{X \subset \kappa : 1\Vdash \kappa \not\in j^+(X) \}$.
Clearly, $I$ is contained in this ideal. Conversely, work in $V$ and suppose $\dot{X}$ is a $\mathbb{V}$ name for a subset of $\kappa$, and $p\in \mathbb{P}$ forces that $1\Vdash_\mathbb{ Q} \kappa \not\in j^+(X)$. Define $A=\{\alpha:p\Vdash\alpha\not\in \dot{X}\}$. Then $A\in U$ (and so $p$ forces that $\dot{X}\in \dot{I}$, finishing the proof), otherwise we can define $F:(\kappa \setminus A)\rightarrow \mathbb{P}/p$ so that $F(\alpha)$ forces $\alpha\in X$. But then in $M$, $F$ represents a condition below $j(p)=p$ which forces $\kappa$ into $j^+(X)$, contradicting the choice of $p$. This proves the claim.
Now we show the precipitousness. Work in $V[G]$. Define a Boolean algebra embedding $P(\kappa)\rightarrow \mathcal{B}(\mathbb{Q})$ (here the codomain is the Boolean completion of $\mathbb{Q}$) which sends a set $X$ to the truth value $\lVert \kappa\in j^+(X)\rVert$. The use of the Boolean completion is so that this map is defined--in general, many different members of $\mathbb{Q}$ could force $\kappa\in j^+(X)$, but in the Boolean completion there is a greatest such member. Since $I$ is the kernel of this embedding, we see that the embedding factors to $\iota:P(\kappa)/I\rightarrow \mathcal{B}(\mathbb{Q})$. We will show that $\iota$ gives a dense embedding from the quotient algebra of $I$ into $\mathbb{Q}$.
Claim: The range of $\iota$ is dense in $\mathcal{B}(\mathbb{Q})$.
Since $\mathbb{Q}$ is densely embedded in $\mathcal{B}(\mathbb{Q})$, it suffices to show that for any $q\in\mathbb{Q}$ there is $X\subseteq \kappa$ with $\iota(X)=q$. Let $q=j(F)(\kappa)$, where $F\in V$ is a function such that for all $\alpha$, $F(\alpha)\in \mathrm{Col}(\omega, <\kappa)$. Define $X=\{\alpha: F(\alpha)\in G\}$. Now for any $H$ which is $V[G]$ generic for $\mathbb{Q}$, we have
$\iota(X)\in H$ iff $\kappa \in j^+(X)$ (definition of $\iota$)
iff $j(F)(\kappa)\in j^+(G)$ (definition of $X$)
iff $q\in j^+(G)$ (definition of $F$)
iff $q\in H$
so by separativity, $\iota(X)=q$, proving the claim.
So forcing with the quotient algebra of $I$ is equivalent to forcing with $\mathbb{Q}$; generic filters are equidefinable using the $\iota$ function. So let $H$ be obtained by applying $\iota$ image to an arbitrary $V[G]$-generic filter for $P(Z)/I$.
Now in $V[G\ast H]$, let $U^+=\{X\subseteq \kappa: \kappa\in j^+(X)\}$ be the ultrafilter derived from $j^+$, so we know from general considerations that the ultrapower of $V[G]$ by $U^+$ embeds into $M[G\ast H]$ (the embedding takes the element represented by a function $f $ to $j^+(f)(\kappa)$). But $U^+$ is exactly the filter generated the $\iota$-preimage of $H$, by the definition of $\iota$, so it is the original generic for $P(Z)/I$.
No comments:
Post a Comment