Friday, July 17, 2015

UCI Summer School part 1: Basics (Monroe Eskew)

The UCI summer school in set theory just finished, and I'll be posting my notes on this blog. They will not be added in chronological order, and the final product will be very different from the actual presentation, assume that all errors were added by me.

There are some exercises which we solved during problem sessions during the day; I will preserve these in the text and can post solutions as well if there is interest.

We start off with Monroe Eskew's lectures on the duality theorem. 

Basic facts: This section is meant to be supplemented by my earlier postings about ideal properties. The basic situation is that $I$ is an ideal on $Z\subseteq P(X)$, $G$ is a generic for the forcing $P(Z)/I$, and $j:V\rightarrow M=V^Z/G$ is the generic ultrapower by $G$.

Definition: An ideal $I$ has the disjointing property if every antichain $A$ in $P(Z)/I$ has a pairwise disjoint system of representatives.

Exercise: If $I$ is a $\kappa$-complete, $\kappa^+$-saturated ideal, then $I$ has the disjointing property.  If $I$ is a normal ideal on $Z\subseteq P(X)$, and $I$ is $|X|^+$-saturated, then $I$ has the disjointing property. 

Lemma: Suppose $A\in I^+$ and $I$ has the disjointing property, and $[A]\Vdash \dot{\tau} \in V^Z/\dot{G}$. Then there is $f:Z\rightarrow V$ such that $A\Vdash \tau = [f]_G$.

Proof: Exercise.

Lemma: Suppose $I$ is a countably closed ideal with the disjointing property. Let $\kappa=\mathrm{crit}(j)$. Then $I$ is precipitous, and the generic ultrapower $M$ is closed under $\kappa$-sequences from $V[G]$.
Proof: Precipitousness follows from the combinatorial characterization of precipitousness. Suppose that $\Vdash \langle \tau_\alpha:\alpha<\kappa\rangle \subseteq V^Z/G$.  By the previous lemma, for all $\alpha<\kappa$, there is $f_\alpha:Z\rightarrow V$ in $V$ such that $\Vdash \tau_\alpha=[f_\alpha]_G$ and $k:Z\rightarrow \mathrm{ON}$ in $V$ such that $\Vdash \kappa=[k]_G$. Finally, take $f:Z\rightarrow V$ given by  $f(z)=\langle f_\alpha(z):\alpha<k(z)\rangle$. In $M$, $[f]_G=\langle \tau_\alpha:\alpha<\kappa\rangle$. $\Box$

Definition: $I$ is $(\lambda,\kappa)$-presaturated if for any sequence of antichains $\langle A_\alpha:\alpha<\gamma<\lambda\rangle$, the set $\{X:\forall\alpha<\gamma\, |\{a\in A_\alpha:a\cap x\in I^+\}|<\kappa\}$ is dense.

Exercise: $(\lambda^+, \kappa^+)$-presaturation and $\kappa$-completeness imply that the generic ultrapower $M$ is closed under $\lambda$-sequences from $V[G]$. Also show this for normal and $(\lambda^+,|X|^+)$-presaturated ideals.

We will use the notation $\mathcal{B}(\mathbb{P})$ to denote Boolean completion of a poset. As we have seen in previous posts, this is very handy when dealing with generic ultrapowers.

Exercise: $\mathbb{P}$ and $\mathbb{Q}$ are separative posets. The following are equivalent: 

  1. $\mathcal{B}(\mathbb{P})=\mathcal{B}(\mathbb{Q})$.
  2. There is a $\mathbb{P}$-name $\dot{h}$ and a $\mathbb{Q}$-name $\dot{g}$ so that $$\Vdash_\mathbb{P} \dot{h} \textrm{ is }\mathbb{Q}-\textrm{generic over }V,$$ $$\Vdash_\mathbb{Q} \dot{g} \textrm{ is }\mathbb{P}-\textrm{generic over }V,$$ and$$\Vdash_\mathbb{P} \dot{g}^{\dot{h}^\dot{G}}=\dot{G} \textrm{  and  } \Vdash_\mathbb{Q} \dot{h}^{\dot{g}^\dot{H}}=\dot{H}.$$

No comments:

Post a Comment