There are some exercises which we solved during problem sessions during the day; I will preserve these in the text and can post solutions as well if there is interest.
We start off with Monroe Eskew's lectures on the duality theorem.
Basic facts: This section is meant to be supplemented by my earlier postings about ideal properties. The basic situation is that $I$ is an ideal on $Z\subseteq P(X)$, $G$ is a generic for the forcing $P(Z)/I$, and $j:V\rightarrow M=V^Z/G$ is the generic ultrapower by $G$.
Definition: An ideal $I$ has the disjointing property if every antichain $A$ in $P(Z)/I$ has a pairwise disjoint system of representatives.
Exercise: If $I$ is a $\kappa$-complete, $\kappa^+$-saturated ideal, then $I$ has the disjointing property. If $I$ is a normal ideal on $Z\subseteq P(X)$, and $I$ is $|X|^+$-saturated, then $I$ has the disjointing property.
Lemma: Suppose $A\in I^+$ and $I$ has the disjointing property, and $[A]\Vdash \dot{\tau} \in V^Z/\dot{G}$. Then there is $f:Z\rightarrow V$ such that $A\Vdash \tau = [f]_G$.
Proof: Exercise.
Lemma: Suppose $I$ is a countably closed ideal with the disjointing property. Let $\kappa=\mathrm{crit}(j)$. Then $I$ is precipitous, and the generic ultrapower $M$ is closed under $\kappa$-sequences from $V[G]$.
Proof: Precipitousness follows from the combinatorial characterization of precipitousness. Suppose that $\Vdash \langle \tau_\alpha:\alpha<\kappa\rangle \subseteq V^Z/G$. By the previous lemma, for all $\alpha<\kappa$, there is $f_\alpha:Z\rightarrow V$ in $V$ such that $\Vdash \tau_\alpha=[f_\alpha]_G$ and $k:Z\rightarrow \mathrm{ON}$ in $V$ such that $\Vdash \kappa=[k]_G$. Finally, take $f:Z\rightarrow V$ given by $f(z)=\langle f_\alpha(z):\alpha<k(z)\rangle$. In $M$, $[f]_G=\langle \tau_\alpha:\alpha<\kappa\rangle$. $\Box$
Definition: $I$ is $(\lambda,\kappa)$-presaturated if for any sequence of antichains $\langle A_\alpha:\alpha<\gamma<\lambda\rangle$, the set $\{X:\forall\alpha<\gamma\, |\{a\in A_\alpha:a\cap x\in I^+\}|<\kappa\}$ is dense.
Exercise: $(\lambda^+, \kappa^+)$-presaturation and $\kappa$-completeness imply that the generic ultrapower $M$ is closed under $\lambda$-sequences from $V[G]$. Also show this for normal and $(\lambda^+,|X|^+)$-presaturated ideals.
We will use the notation $\mathcal{B}(\mathbb{P})$ to denote Boolean completion of a poset. As we have seen in previous posts, this is very handy when dealing with generic ultrapowers.
Exercise: $\mathbb{P}$ and $\mathbb{Q}$ are separative posets. The following are equivalent:
- $\mathcal{B}(\mathbb{P})=\mathcal{B}(\mathbb{Q})$.
- There is a $\mathbb{P}$-name $\dot{h}$ and a $\mathbb{Q}$-name $\dot{g}$ so that $$\Vdash_\mathbb{P} \dot{h} \textrm{ is }\mathbb{Q}-\textrm{generic over }V,$$ $$\Vdash_\mathbb{Q} \dot{g} \textrm{ is }\mathbb{P}-\textrm{generic over }V,$$ and$$\Vdash_\mathbb{P} \dot{g}^{\dot{h}^\dot{G}}=\dot{G} \textrm{ and } \Vdash_\mathbb{Q} \dot{h}^{\dot{g}^\dot{H}}=\dot{H}.$$
No comments:
Post a Comment